西安电子科技大学 数学与统计学院,陕西 西安 710126
[ "张 丹(1996—),女,西安电子科技大学硕士研究生,E-mail:1192908842@qq.com;" ]
[ "周水生(1972—),男,教授,博士,E-mail:sszhou@mail.xidian.edu.cn;" ]
[ "张文梦(1996—),女,西安电子科技大学硕士研究生,E-mail:3137710140@qq.com" ]
扫 描 看 全 文
张丹, 周水生, 张文梦. 一种新的直觉模糊最小二乘支持向量机[J]. 西安电子科技大学学报, 2022,49(5):125-136.
张丹, 周水生, 张文梦. 一种新的直觉模糊最小二乘支持向量机[J]. 西安电子科技大学学报, 2022,49(5):125-136. DOI: 10.19665/j.issn1001-2400.2022.05.015.
最小二乘支持向量机只需求解一个线性方程组即可得到闭式解,训练速度快,因而广泛应用于分类问题。但最小二乘支持向量机模型容易受到离群点和噪声的影响,往往使得其分类精度下降,样本点的模糊加权是解决该问题的一种有效方法。直觉模糊集既包含样本点的隶属度信息又包含样本点的非隶属度信息,可以更加详细地刻画样本点的分布特征。为此,基于直觉模糊集,通过剔除离群点得到更加准确的类中心,再计算样本点到类中心的距离,得到样本点对其所在类的隶属度程度。同时,采用核,k,近邻的方法,查找样本点的,k,个近邻里另一类样本点的数量,进而得到样本点的非隶属度信息。最后,根据样本点的隶属度与非隶属度得到一种新的模糊值。进一步将提出的模糊值用于改进最小二乘支持向量机模型,通过赋予离群点和噪声低的模糊值,减少了它们对最小二乘支持向量机模型的影响,提高了最小二乘支持向量机模型的精度。实验结果表明,与已有算法对比,提出的算法可以有效降低离群点和噪声对最小二乘支持向量机模型的影响,提高模型的鲁棒性。
The least square support vector machine only needs to solve a linear system of equations to get a closed solution,so it is widely used in classification problems because of its fast training speed.However,the least squares support vector machine model is easily affected by outliers and noise,which often reduces the classification accuracy.Fuzzy weighting of sample points is an effective method to solve this problem.Intuitionistic fuzzy sets contain both membership information and non-membership information of sample points,which can describe the distribution characteristics of sample points in more detail.Therefore,based on the intuitionistic fuzzy set,this paper obtains a more accurate class center by eliminating outliers,and then calculates the distance between the sample point and the class center to obtain the membership degree of the sample point to its class.At the same time,the kernel ,k-,nearest neighbor method is used to find the number of ,k, neighboring sample points of another class,and then the non-membership information of sample points is obtained.Finally,a new fuzzy value is obtained according to the membership degree and non-membership degree of sample points.Furthermore,the proposed fuzzy values are used to improve the LSSVM model.By assigning outliers and fuzzy values with low noise,their influence on the LSSVM model is reduced and the accuracy of the LSSVM model is improved.Experimental results show that,compared with the existing algorithms,the proposed algorithm can reduce the influence of outliers and noise on the LSSVM model and improve the robustness of the model.
最小二乘支持向量机模糊集离群点和噪声k近邻
least square support vector machinefuzzy setsoutliers and noisek-nearest neighbor
郭泽坤, 田隆, 韩宁, 等. 采用CNN-SSD的雷达HRRP小样本目标识别方法[J]. 西安电子科技大学学报, 2021, 48(2):7-14.
GUO Zekun, TIAN Long, HAN Ning, et al. CNN-SSD Radar HRRP Small Sample Target Recognition Method is Adopted[J]. Journal of Xidian University, 2021, 48(2):7-14.
王俊祥, 黄霖, 张影, 等. 低复杂度的增强图像来源检测算法[J]. 西安电子科技大学学报, 2021, 48(1):96-106.
WANG Junxiang, HUANG Lin, ZHANG Ying, et al. Low Complexity Enhanced Image Source Detection Algorithm[J]. Journal of Xidian University, 2021, 48(1):96-106.
MEHMOOD Z, ASGHAR S. Customizing SVM as A Base Learner with AdaBoost Ensemble to Learn from Multi-Class Problems:A Hybrid Approach AdaBoost-MSVM[J]. Knowledge-Based Systems, 2021, 217:106845. DOI:10.1016/j.knosys.2021.106845http://doi.org/10.1016/j.knosys.2021.106845https://linkinghub.elsevier.com/retrieve/pii/S0950705121001088https://linkinghub.elsevier.com/retrieve/pii/S0950705121001088
MOODI M, GHAZVINI M, MOODI H. A Hybrid Intelligent Approach to Detect Android Botnet Using Smart Self-Adaptive Learning-Based PSO-SVM[J]. Knowledge-Based Systems, 2021, 222:106988. DOI:10.1016/j.knosys.2021.106988http://doi.org/10.1016/j.knosys.2021.106988https://linkinghub.elsevier.com/retrieve/pii/S0950705121002513https://linkinghub.elsevier.com/retrieve/pii/S0950705121002513
SUYKENS J, VANDEWALLE J. Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300. DOI:10.1023/A:1018628609742http://doi.org/10.1023/A:1018628609742http://link.springer.com/10.1023/A:1018628609742http://link.springer.com/10.1023/A:1018628609742
YANG A, LI W, YANG X. Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machine[J]. Knowledge-Based Systems, 2019, 163:159-173. DOI:10.1016/j.knosys.2018.08.027http://doi.org/10.1016/j.knosys.2018.08.027https://linkinghub.elsevier.com/retrieve/pii/S0950705118304234https://linkinghub.elsevier.com/retrieve/pii/S0950705118304234
HE C, WU T, LIU C, et al. A Novel Method of Composite Multiscale Weighted Permutation Entropy and Machine Learning for Fault Complex System Fault Diagnosis[J]. Measurement, 2020, 158:107748. DOI:10.1016/j.measurement.2020.107748http://doi.org/10.1016/j.measurement.2020.107748https://linkinghub.elsevier.com/retrieve/pii/S0263224120302864https://linkinghub.elsevier.com/retrieve/pii/S0263224120302864
WANG J, SHAO W, JUNSEOK K. Combining MF-DFA and LSSVM for Retina Images Classification[J]. Biomedical Signal Processing and Control, 2020, 60:101943. DOI:10.1016/j.bspc.2020.101943http://doi.org/10.1016/j.bspc.2020.101943https://linkinghub.elsevier.com/retrieve/pii/S1746809420300999https://linkinghub.elsevier.com/retrieve/pii/S1746809420300999
DONG L, LIAO J. Wavelet Kernel Function Based Multiscale LSSVM for Elliptic Boundary Value Problems[J]. Neurocomputing, 2019, 356:40-51. DOI:10.1016/j.neucom.2019.04.076http://doi.org/10.1016/j.neucom.2019.04.076https://linkinghub.elsevier.com/retrieve/pii/S092523121930668Xhttps://linkinghub.elsevier.com/retrieve/pii/S092523121930668X
SUYKENS J A K, DE BRABANTER J, LUKAS L, et al. Weighted Least Squares Support Vector Machines:Robustness and Sparse Approximation Combining MF-DFA and LSSVM for Retina Images Classification[J]. Neurocomputing, 2002, 48(1-4):85-105. DOI:10.1016/S0925-2312(01)00644-0http://doi.org/10.1016/S0925-2312(01)00644-0https://linkinghub.elsevier.com/retrieve/pii/S0925231201006440https://linkinghub.elsevier.com/retrieve/pii/S0925231201006440
YANG X, TAN L, HE L. A Robust Least Squares Support Vector Machine for Regression and Classification with Noise[J]. Neurocomputing, 2014, 140:41-52. DOI:10.1016/j.neucom.2014.03.037http://doi.org/10.1016/j.neucom.2014.03.037https://linkinghub.elsevier.com/retrieve/pii/S0925231214004718https://linkinghub.elsevier.com/retrieve/pii/S0925231214004718
MA J, ZHOU S, LI D. Robust Multiclass Least Squares Support Vector Classifier with Optimal Error Distribution[J]. Knowledge-Based Systems, 2021, 215:106652. DOI:10.1016/j.knosys.2020.106652http://doi.org/10.1016/j.knosys.2020.106652https://linkinghub.elsevier.com/retrieve/pii/S0950705120307814https://linkinghub.elsevier.com/retrieve/pii/S0950705120307814
CHEN L, ZHOU S. Sparse Algorithm for Robust LSSVM in Primal Space[J]. Neurocomputing, 2018, 275:2880-2891. DOI:10.1016/j.neucom.2017.10.011http://doi.org/10.1016/j.neucom.2017.10.011https://linkinghub.elsevier.com/retrieve/pii/S0925231217316569https://linkinghub.elsevier.com/retrieve/pii/S0925231217316569
LIN C, WANG S. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks. 2002, 13(2):464-471. DOI:10.1109/72.991432http://doi.org/10.1109/72.991432http://ieeexplore.ieee.org/document/991432/http://ieeexplore.ieee.org/document/991432/
TANG W. Fuzzy SVM with A New Fuzzy Membership Function to Solve the Two-Class Problems[J]. Neural Processing Letters, 2011, 34(3):209-219. DOI:10.1007/s11063-011-9192-yhttp://doi.org/10.1007/s11063-011-9192-yhttp://link.springer.com/10.1007/s11063-011-9192-yhttp://link.springer.com/10.1007/s11063-011-9192-y
BATUWITA R, PALADE V. FSVM-CIL:Fuzzy Support Vector Machines for Class Imbalance Learning[J]. IEEE Transactions on Fuzzy Systems. 2010, 18 (3):558-571. DOI:10.1109/TFUZZ.2010.2042721http://doi.org/10.1109/TFUZZ.2010.2042721http://ieeexplore.ieee.org/document/5409611/http://ieeexplore.ieee.org/document/5409611/
LIU J. Fuzzy Support Vector Machine for Imbalanced Data with Borderline Noise[J]. Fuzzy Sets and Systems, 2021, 413:64-73. DOI:10.1016/j.fss.2020.07.018http://doi.org/10.1016/j.fss.2020.07.018https://linkinghub.elsevier.com/retrieve/pii/S0165011420302876https://linkinghub.elsevier.com/retrieve/pii/S0165011420302876
TAO X, LI Q, REN C, et al. Affinity and Class Probability-Based Fuzzy Support Vector Machine for Imbalanced Data Sets[J]. Neural Networks, 2020, 122:289-307. DOI:S0893-6080(19)30338-7http://doi.org/S0893-6080(19)30338-7
FAN Q, WANG Z, LI D, et al. Entropy-Based Fuzzy Support Vector Machine for Imbalanced Datasets[J]. Knowledge-Based Systems, 2017, 115:87-99. DOI:10.1016/j.knosys.2016.09.032http://doi.org/10.1016/j.knosys.2016.09.032https://linkinghub.elsevier.com/retrieve/pii/S0950705116303495https://linkinghub.elsevier.com/retrieve/pii/S0950705116303495
ATANASSOV K. Intuitionistic Fuzzy Sets[J]. Fuzzy Sets and Systems, 1986, 20:87-96. DOI:10.1016/S0165-0114(86)80034-3http://doi.org/10.1016/S0165-0114(86)80034-3https://linkinghub.elsevier.com/retrieve/pii/S0165011486800343https://linkinghub.elsevier.com/retrieve/pii/S0165011486800343
哈明虎, 黄澍, 王超, 等. 直觉模糊支持向量机[J]. 河北大学学报. 2011, 31(3):225-229.
HA Minghu, HUANG Shu, WANG Chao, et al. Intuitionistic Fuzzy Support Vector Machine[J]. Journal of Hebei University, 2011, 31(3):225-229.
HA M, WANG C, CHEN J. The Support Vector Machine Based on Intuitionistic Fuzzy Number and Kernel Function[J]. Soft Computing, 2013, 17:635-641. DOI:10.1007/s00500-012-0937-yhttp://doi.org/10.1007/s00500-012-0937-yhttp://link.springer.com/10.1007/s00500-012-0937-yhttp://link.springer.com/10.1007/s00500-012-0937-y
REZVANI S, WANG X, POURPANAH F. Intuitionistic Fuzzy Twin Support Vector Machines[J]. IEEE Transactions on Fuzzy Systems, 2019, 27:2140-2151. DOI:10.1109/TFUZZ.2019.2893863http://doi.org/10.1109/TFUZZ.2019.2893863https://ieeexplore.ieee.org/document/8616852/https://ieeexplore.ieee.org/document/8616852/
HAN J, KAMBER M. Data Mining:Concepts and Techniques[M]. Amsterdam: Elsevier, 2012.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构